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ABSTRACT The pathogenic mechanisms underlying severe SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2) infection remain largely unelucidated.
High-throughput sequencing technologies that capture genome and transcriptome
information are key approaches to gain detailed mechanistic insights from infected
cells. These techniques readily detect both pathogen- and host-derived sequences,
providing a means of studying host-pathogen interactions. Recent studies have
reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing
(RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evi-
dence of viral integration in the human genome as a potential pathogenic mecha-
nism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm,
it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be
in a location where splicing events could result in genome integration. Therefore,
we investigated the biological authenticity of HVC events. In contrast to true biologi-
cal events like mRNA splicing and genome rearrangement events, which generate re-
producible chimeric sequencing fragments across different biological isolates, we
found that HVC events across >100 RNA-seq libraries from patients with coronavirus
disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq
library preparation is inherently error prone due to random template switching dur-
ing reverse transcription of RNA to ¢cDNA. By counting chimeric events observed
when constructing an RNA-seq library from human RNA and spiked-in RNA from an
unrelated species, such as the fruit fly, we estimated that ~1% of RNA-seq reads are
artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC
events was, in fact, not greater than this background “noise.” Finally, we developed
a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of
infected cells. This method enriched viral sequences but did not enrich HVC events,
suggesting that the majority of HVC events are, in all likelihood, artifacts of library
construction. In conclusion, our findings indicate that HVC events observed in RNA-
sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely
artifacts arising from random template switching of reverse transcriptase and/or
sequence alignment errors. Therefore, the observed HVC events do not support
SARS-CoV-2 fusion to cellular genes and/or integration into human genomes.

IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsi-
ble for COVID-19, are not fully understood. In particular, relatively little is known
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about the reasons some individuals develop life-threatening or persistent COVID-19.
Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data
from SARS-CoV-2-infected cells and suggested that HVC events support potential
“human genome invasion” and “integration” by SARS-CoV-2. This suggestion has
fueled concerns about the long-term effects of current mRNA vaccines that incorpo-
rate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded
RNA virus that does not encode a reverse transcriptase and does not include a nu-
clear phase in its life cycle, so some doubts have rightfully been expressed regarding
the authenticity of HVCs and the role played by endogenous retrotransposons in
this phenomenon. Thus, it is important to independently authenticate these HVC
events. Here, we provide several lines of evidence suggesting that the observed HVC
events are likely artifactual.

KEYWORDS COVID-19, SARS-CoV-2, RNA sequencing, sequencing reads, chimeric
reads, host-virus fusion

dvances in and availability of high-throughput sequencing technologies have

enabled the accumulation of detailed molecular-level information from cells,
including genome variations, gene transcription, and gene regulation. These technolo-
gies are extremely sensitive at capturing nucleic acid sequences regardless of their ori-
gin. As such, the data from these techniques contain not only sequences encoded by
the cell itself but also sequences encoded by infecting pathogens and/or common
contaminating agents (e.g., vectors, plasmids, etc.) (1, 2). In virus-infected cells, cap-
tured sequences derived from the host or virus, if appropriately analyzed, represent a
powerful tool to study the mechanisms underlying host-pathogen interactions. High-
throughput assays are invaluable resources for identifying novel biological events, and
they provide exceptionally detailed information about host-virus interactions occurring
in vivo. This is exemplified by the discovery of viral integration as a driver of oncogene-
sis in HPV-associated cancers (3). We have previously deployed these methods to gain
mechanistic insights into the pathophysiology of oncogenic viruses like Epstein-Barr vi-
rus (EBV), hepatitis B virus (HBV), and human papillomavirus (HPV) (1, 4-6). Even in the
absence of infection, detailed analyses of transcriptome sequencing (RNA-seq) data
can deliver new insights into cell biology, including, for example, discovery of novel lin-
ear or circular genes and isoforms. On the other hand, the technology is extremely sen-
sitive, relies on low-fidelity reverse transcriptases (RTs) during library preparation, and
presents many computational challenges during chimeric-sequence alignment.
Collectively, these can result in the detection of low-frequency sequencing reads origi-
nating from artifactual events or contaminants (including plasmid vectors). Thus,
appropriate positive and negative controls during analysis are essential to distinguish
real from artifactual events.

RNA-sequencing data from virally infected cells contain reads that map perfectly to
either the host genome or the viral genome. However, a significant portion of host
sequencing reads can also be aligned to discontiguous sections of the genome and of-
ten represent canonical forward-splicing or back-splicing events generated from
mRNAs and circular RNAs, respectively (7, 8). In cells infected with DNA viruses that
integrate into the host genome (e.g., HPV or HBV), a chimeric read that is partly
mapped to the host genome and partly mapped to the virus genome is a signature of
transcribed segments of the host genome containing integrated viral DNA (9-11).
Similarly, in virus-induced-cancer cells, chimeric reads that are partly mapped to one
gene and partly mapped to another gene are the markers of genomic rearrangement
and/or gene fusion (12, 13). Thus, chimeric reads can represent real biological events.

The pathogenic mechanisms underlying severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), the virus responsible for pandemic coronavirus disease of 2019
(COVID-19), are under investigation (14-17) but still not fully understood. In particular,
relatively little is known about the processes following viral infection and why some
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individuals develop mild or no symptoms, while others develop life-threatening or per-
sistent (“long”) COVID-19. In this setting, sequencing assays are key methods for uncov-
ering as-yet-undiscovered mechanisms of pathogenesis. Recent studies have identified
host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected
cells and samples from COVID-19 patients (18, 19). Both studies have suggested that
HVC events support potential “human genome invasion” and “integration” by SARS-
CoV-2. This suggestion has fueled concerns about the long-term effects of current vac-
cines that incorporate elements of the viral genome (20). SARS-CoV-2 is a positive-
sense, single-stranded RNA virus that does not encode a reverse transcriptase and
does not include a nuclear phase in its life cycle, so some doubts have rightfully been
expressed regarding the authenticity of HVCs and the role played by endogenous ret-
rotransposons in this phenomenon. Thus, it is important to independently authenticate
these HVC events.

Therefore, we investigated the presence of HVC events in a large number of cur-
rently available RNA-sequencing samples from SARS-CoV-2-infected cells and patients
with COVID-19. We also developed and deployed a novel experimental approach that
enriched viral sequences from infected cells during RNA-seq library preparation.
Collectively, we conclude that current data do not support the authenticity of HVC
events in SARS-CoV-2-infected samples.

RESULTS

HVC events are detected in RNA-seq from SARS-CoV-2-infected cells but
infrequently in samples from patients with COVID-19. Recent reports (18, 19) about
the presence of HVC events in SARS-CoV-2-infected cells have been interpreted as sup-
porting evidence for viral integration into the human genome and as a potential mecha-
nism of viral persistence. To gain insights into the authenticity of these HVC events, we
extracted RNA-sequencing reads that partly align to the host genome and partly align to
the viral genome. These reads are considered the signature of HVC events in RNA-
sequencing data sets. Specifically, we reanalyzed the three available RNA-seq data sets
from patients with COVID-19 (n=57 samples) and in vitro SARS-CoV-2-infected cells
(n=64 samples). We categorized sequencing reads as those that perfectly aligned to the
human genome (build hg38) in a contiguous or discontiguous manner (i.e., reads origi-
nating from one exon or reads spanning exon-exon junctions), those that perfectly
aligned to the SARS-CoV-2 viral genome, and those that partly aligned to both host and
viral genomes (potentially representing HVC events) (Fig. 1A and Tables 1 and 2). Viral-
genome-mapped reads were detected across several cell lines infected with SARS-CoV-2
(Fig. 1B and Tables 1 and 2). SARS-CoV-2-infected Calu-3 and A549-ACE2 cells had the
highest percentages (~20 to 70%) of viral reads, while other cells, including A549 cells,
samples from lung autopsies, or bronchoalveolar lavage fluid (BALF) of patients with
COVID-19, had dramatically lower representation of viral reads (Fig. 1B and Tables 1 and
2). This is consistent with the fact that overexpression of angiotensin-converting enzyme
2 (ACE2), a well-characterized SARS-CoV-2 entry receptor, on A549 cells significantly
enhances SARS-CoV-2 viral titers. The frequency of viral reads in cells infected in vitro
with other viruses, including influenza A virus (IAV), Middle East respiratory syndrome
(MERS) coronavirus, and respiratory syncytial virus (RSV), were within the same range
(~10 to 15%) as those of Calu-3 and A549 cells, indicating similar levels of in vitro infec-
tivity of these respiratory viruses (Fig. 1B and Table 3).

We next quantified the reads that partly mapped to the human genome and partly
mapped to the SARS-CoV-2 genome (see Materials and Methods). We found that nearly
0.05 to 1% of all viral reads are formed of hybrid sequences between host and virus
RNAs, a frequency consistent with those recently reported by others (Fig. 1C) (18, 19).
Infected A549-ACE2 and Calu-3 cells had the highest percentages of chimeric reads,
while others, including normal human bronchial epithelial cells (NHBE) and lung au-
topsy samples or BALF of patients with COVID-19, had ~1.5 to 2 orders of magnitude
fewer chimeric reads (Fig. 1C). Similar percentages of chimeric reads were observed in
cells infected with other viruses (Fig. 1C).
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FIG 1 HVC events are detectable in RNA-seq from SARS-CoV-2-infected cells but infrequently in
from COVID-19 patients. (A) Schematic presentation of RNA-sequencing data analysis
pipeline. (B) Viral reads in the indicated SARS-CoV-2-infected or other virally infected cells as a
proportion of the total reads mapped to the chimeric genome. (C) HVC reads in the indicated SARS-
CoV-2-infected or other virally infected cells as a proportion of the total reads mapped to the virus

samples

(Continued on next page)
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TABLE 1 SARS-CoV-2-infected samples from independent studies used here

Sample Accession no. Reference
A549-ACE2 GSE147507 25
GSE154613 26
A549 GSE159191 27
GSE147507 25
Calu-3 GSE147507 25
PRINA665581/SRP285334 28
GSE148729 29
COVID-19 patients GSE147507 25
GSE151803 30
GSE150316 31

aSee Table 2 for the complete list of individual samples.

To test whether there are regions of the viral genome that more frequently partici-
pate in chimeric events, we separately aligned the viral reads and the viral fragments of
the chimeric reads to the SARS-CoV-2 genome (Fig. 1D). Consistent with previous stud-
ies, we found higher coverage of the 3’ end of the SARS-CoV-2 genome in sequencing
libraries across different cells (Fig. 1D, top). This portion of the virus encodes the viral N
protein. Similarly, we observed that viral fragments from chimeric reads are also biased
toward the 3’ end of the SARS-CoV-2 genome (Fig. 1D, bottom). This is consistent with a
stochastic model in which chimeric events are dependent on the availability of template
RNA, i.e., the more viral-RNA fragments present, the higher the chance of participation in
chimeric events. Based on this model, we hypothesized that host fragments participating
in chimeric reads will also be overrepresented in genes that are more highly expressed.
Indeed, we observed that human genes with HVC events are more highly expressed
than those without HVC events across all SARS-CoV-2-infected cells (Fig. 1E). This is
exemplified by A549-ACE2 cells, which support high level of virus replication. In these
cells, ACE2 was one of the top loci participating in chimeric events (Fig. 1F).

HVC events are not reproducible and have frequencies comparable to those of
artifactual chimeric events. A precise and reproducible junction between host and vi-
ral fragments of a chimeric event would be evidence of authentic HVC events occurring
as part of the natural life cycle of the virus. To determine whether the junctions of HVC
events are precise and reproducible, we compared RNA-seq data from independent
studies (Tables 1 and 2) and looked for reads that spanned known or novel exon-exon
splicing junctions, as well as HVCs (Fig. 1A and B). For each cell type, we specifically
sourced two or more RNA-seq libraries from independent studies (Table 1). As expected,
~90% of known splicing events sourced from the RefSeq database were reproducible
between independent studies (Fig. 2A and B). We also found that nearly one-third of
novel (i.e., unannotated) splicing events could also be independently replicated between
different studies (Fig. 2A and B). Conversely, almost none of the exact HVC events were
reproducible in independent data sets (Fig. 2A and B). Of the three overlapping HVC
events found only in A549-ACE2 cells, two mapped to the mitochondrial chromosome
and one to a region of chromosome 12 annotated as an rRNA repeat.

Another way to determine whether specific HVCs are reproducible is to identify the
proportion of unique reads in a given RNA-seq data set that span the HVC junction.
The higher the number of reads, the more likely it is that the HVC is not a stochastic
event. We therefore examined the number of unique reads spanning known splicing,

FIG 1 Legend (Continued)

genome. (D) SARS-CoV-2 genome coverage based on reads mapping perfectly to the virus genome
(top) or to the viral segments of HVC events (bottom). (E) Violin plots showing the expression of all
human genes with or without HVC events in the indicated infected cells. *, P<0.05, and ****,
P <0.0001, by Kruskal-Wallis and FDR correction. (F) Dot plots showing the expression of all human
genes in SARS-CoV-2-infected A549-ACE2 cells ordered by gene expression level. Genes with or
without HVC events are highlighted with red and blue, respectively. See Tables 1 and 2 for the
sources of data in this figure. TPM, transcripts per million.
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TABLE 3 Detailed information on RNA-seq libraries from IAV-, RSV-, or MERS-infected cells used in this study®

No. of reads mapped to: Ratio of reads
mapped to Ratio of chimeric
virus/total No. of reads/reads
Sample GEO/SRA Library Human mapped chimeric mapped to

Accession no. annotation data set size? genome virus reads (%)¢ reads virus (%)9
GSM4432396 A549_IAV GSE147507 13,418,279 9,503,073 1,517,013 13.77 235 0.02
GSM4432397 A549_|AV GSE147507 4,464,185 2,318,324 291,465 11.17 102 0.03
GSM4432392 A549_RSV GSE147507 11,230,884 9,155,717 95,783 1.04 1,349 1.41
GSM4432393 A549_RSV GSE147507 6,420,293 5,326,409 38,429 0.72 663 1.73
GSM4462357 A549_RSV GSE147507 18,265,188 13,991,448 2,173,813 13.45 719 0.03
GSM4462358 A549_RSV GSE147507 10,113,566 7,168,172 1,664,353 18.84 1,487 0.09
GSM4462359 A549_RSV GSE147507 17,024,730 12,665,503 2,395,363 15.90 1,811 0.08
SRR10357369 Calu3_MERS GSE139516 41,727,622 35,420,732 2,318,768 6.14 1,599 0.07
SRR10357370 Calu3_MERS GSE139516 39,671,252 33,878,259 2,167,867 6.01 2,491 0.11
SRR10357371 Calu3_MERS GSE139516 44,724,750 38,097,990 2,381,305 5.88 1,998 0.08
GSM4462367 NHBE_IAV GSE147507 43,108,363 29,007,597 2,143,637 6.88 2,763 0.13
GSM4462368 NHBE_IAV GSE147507 10,822,990 6,785,007 458,523 6.33 864 0.19
GSM4462369 NHBE_IAV GSE147507 9,991,901 7,432,860 1,178,928 13.69 7,165 0.61
GSM4462370 NHBE_IAV GSE147507 5,174,748 3,790,576 655,191 14.74 1,649 0.25

aThe library size and the total number of reads mapped to the human genome, virus genome, or human-virus chimeric reads are reported.
bLibrary size is the total number of reads in the RNA-seq library.

¢(No. of reads mapped to virus/total no. of mapped reads) x 100.

9(No. of chimeric reads/no. of reads mapped to virus) x 100.

novel splicing, and HVC junctions in each RNA-seq data set (Fig. 2C). We found that
only 2 to 15% of HVC events had more than one read spanning their junctions. This is
in clear contrast to 90 to 95% and 40 to 70% of known and novel splicing events,
respectively, that have more than one supporting read (Fig. 2C).

Our data described above indicated that observed HVCs likely represent nonbiolog-
ical artifacts. However, how these artifacts are generated remained unclear. Reverse
transcriptase enzymes (RTs) are error prone and susceptible to a process called random
template switching (21). In this process, RTs synthesizing cDNA infrequently dissociate
from their template RNA and associate with a secondary template RNA, resulting in the
creation of an artifactual fusion cDNA containing both the original template and the
secondary RNA. Reverse transcription is one of the main steps in most commonly used
RNA-sequencing methods, and thus, it is conceivable that some of the HVC events are
artifacts of reverse transcription. To test this, we took advantage of control spike-in
libraries that are typically utilized for internal calibration and normalization. In those
libraries, a small quantity of RNA from an unrelated species is spiked into the RNA of in-
terest, followed by RNA-sequencing-library preparation. We sourced existing human
RNA-sequencing libraries that harbored spiked-in Drosophila melanogaster RNA and
that were prepared using a common library preparation kit from Illumina. We mapped
these libraries to the human-Drosophila chimeric genome, using the exact same
method that we employed when analyzing the host-virus chimeric genome (see
Materials and Methods and Table 4). Nearly 5% of all reads were mapped to the
Drosophila genome. We then identified the fraction of Drosophila-mapped RNAs that
were human-Drosophila chimeric. Since there is no actual possibility of biological
fusion events between host and spiked-in RNAs, we considered any chimeric reads
identified as artifactual. This could therefore determine the expected background level
("noise”) of chimeric events created as artifacts of reverse transcription and/or align-
ment errors. We observed ~1% of all Drosophila-mapped reads to participate in chi-
meric events (Fig. 2D). Interestingly, in all analyzed libraries from SARS-CoV-2-infected
cells, the observed fractions of HVC reads were lower than 1%, indicating that the fre-
quency of HVC events in SARS-CoV-2-infected libraries was comparable to the
expected background “noise” of chimeric events created as artifacts of reverse tran-
scription and/or alignment errors.

We next examined the expression of human genes with and without Drosophila chi-
meras. Similar to what we had observed in SARS-CoV-2-infected cells (Fig. 1E), human
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FIG 2 HVC events are not reproducible and have frequencies comparable to those of artifactual
chimeric events. (A, B) Representative Venn diagrams (A) and cumulative data (B) comparing known
splicing, novel splicing, and HVC events across independent studies (see Table 1 for the list of
independent studies used here). The accession numbers of data from representative studies used in
panel A are GSE147507 and PRINA665581/SRP285334 for Calu-3 cells, GSE147507 and GSE151803 for
patient samples, GSE147507 and GSE159191 for A549 cells, and GSE147507 and GSE154613 for A549-
ACE2 cells. (C) Histograms showing the numbers of reads spanning junctions of the indicated events.

(Continued on next page)
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TABLE 4 Detailed information on Drosophila spike-in RNA-seq libraries used in this study®

No. of reads mapped to: Ratio of chimeric
No. of reads/reads

Accession Sample GEO/SRA Library Human Drosophila chimeric mapped

no. annotation data set sizeb genome chra reads to Drosophila (%)¢
SRR4934910 P493_FlyS2_A SRP075325 19,333,486 14,866,599 25,994 114 0.44

SRR4934934 P493_FlyS2_A SRP075325 20,972,522 15,808,054 33,233 105 0.32

SRR4934935 P493_FlyS2_A SRP075325 20,579,126 15,663,884 28,772 197 0.68

SRR4934311 P493_FlyS2_B SRP075325 23,229,139 18,482,501 18,498 138 0.75

SRR4934799 P493_FlyS2_B SRP075325 20,416,688 16,460,316 13,049 134 1.03

SRR4934936 P493_FlyS2_B SRP075325 21,016,231 17,054,532 15,935 112 0.71

SRR4934495 P493_FlyS2_C SRP075325 26,464,903 21,675,460 10,466 155 1.48

SRR4934687 P493_FlyS2_C SRP075325 21,191,865 17,584,755 8,330 93 1.12

SRR4934937 P493_FlyS2_C SRP075325 17,256,607 14,298,342 5,587 34 0.61

aThe library size and the total number of reads mapped to the human genome, chr4 of the Drosophila genome, or human-Drosophila (chr4) chimeric reads are reported.
bLibrary size is the total number of reads in the RNA-seq library.
(No. of chimeric reads/no. of reads mapped to chr4 of Drosophila) x 100.

genes with chimeric events were more highly expressed than those without such
events (Fig. 2E). This was consistent with a stochastic model in which chimeric events
are dependent on the availability of template RNA and driven by random RT template
switching. Repeat sequences of RNA are known substrates for RT template switching
(21). To test this, we examined the genomic distribution of the host segments of chi-
meric events between human and spiked-in Drosophila RNA and found that these arti-
factual chimeric events were, indeed, enriched in RNAs with highly repetitive struc-
tures, including rRNAs and tRNAs (Fig. 2F). We next sought to determine whether the
same observation holds true in virally infected cells. In RNA-seq libraries of SARS-CoV-
2-infected cells, we found that HVCs were similarly enriched in RNAs with repetitive
motifs, including rRNAs and tRNAs, compared to the total transcriptome (see Materials
and Methods and Fig. 2G). Thus, the frequency and the genomic distribution of HVC
events were comparable to those from artifactual chimeric events generated by RT
template switching, and host RNAs partaking in chimera formation were enriched in
structures conducive to template switching.

Experimental enrichment of viral RNA during RNA-seq library construction
does not enrich HVC events. Although viral reads in most infected RNA-sequencing
libraries were readily detectable, the fraction of viral reads to total mapped reads was low
(Fig. 1B), presumably due to heterogeneous infectivity rates within cell cultures or patient
samples. Thus, it is possible that detection of HVC events and junctional reads is too infre-
quent to allow robust detection of identical species across different samples. Therefore,
we developed a technique to experimentally enrich viral RNAs during RNA-seq library
preparation that would also enrich any bona fide HVC events as well. To this end, we
designed a pool of 30 specific oligonucleotides that spanned the entire SARS-CoV-2 ge-
nome (Table 5). Using these oligonucleotides, we developed a novel methodology to spe-
cifically amplify viral RNAs from SARS-CoV-2-infected cells and constructed sequencing
libraries (see Materials and Methods and schematic in Fig. 3A). Two types of chimeric
events are possible, 5'-to-3" host-virus chimeras and 5'-to-3’ virus-host chimeras. To
enrich viral sequences and ensure “capture” of both types of chimeras, we used two
approaches (enrichment methods 1 and 2, respectively, in Fig. 3A). To enrich viral sequen-
ces that also contain 5’-to-3" host-virus chimeras (enrichment method 1 in Fig. 3A), we
carried out virus-specific reverse transcription to construct cDNA incorporating an
lllumina P5 adaptor sequence and T7 RNA polymerase promoter, followed by second-

FIG 2 Legend (Continued)

(D) The fractions of spiked-in Drosophila RNA detected to be chimeras with human RNA. Data are
from the data set with accession number PRINA311567. (E) Violin plots showing expression of all
human genes with or without human-Drosophila chimeric events. TPM, transcripts per million. (F)
Distribution of genomic features in the human segment of human-Drosophila chimeric events. (G)
Distribution of genomic features in the host segment of human-SARS-CoV-2 HVC events. *, P < 0.05,
**, P<0.01, and ****, P<<0.0001, by Wilcoxon test (B, E) and FDR correction (F and G).
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TABLE 5 Primers and oligonucleotides used in this study

Pool for enrichment (method) or
primer?

Sequence (5'—3')®

T7-P5-VSP pool (1)

P7-N6

P7-VSP pool (2)

TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTcactgctatgtttagtgttc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTcaacataagagaacacacag
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtgcttttcactcttcatttc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTaaacctagatgtgctgatg
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTgtgtgaaggtattgtttgtt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtttttgtcctttttaggctc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTctttaccagacattttgctc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTatctttcattttaccgtcac
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTgttctccattctggttactg
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTgtgctatgtagttacgagaa
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTatagaagtgaataggacacg
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtcaagtcctecctaatgtt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTattggttgctcttcatctaa
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTgtctgaaagaagcaatgaag
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTagaggatgaaatggtgaatt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTcaagtgagaaccaaaagataa
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTgagtaaacgtaaaaagaaggt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTaagccaaagcctcattatta
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTaatctactgatgtcttggtc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTcctttccacaaaaatcaact
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtaatcagcaatctttccagt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTacagaaagtagtgaaaccat
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTcaaaataggcatacaccatc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTctttccatccaacttttgtt
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTttctgtgtaactccaatacc
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTaaacccacttctcttgttat
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtgggtggtttatgtgattta
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTggtcaaggttaatataggca
TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtacgtccattcataccattt

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgaacactaaacatagcagtg
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTctgtgtgttctcttatgttg
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgaaatgaagagtgaaaagca
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcatcagcacatctaggttt
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaacaaacaataccttcacac
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgagcctaaaaaggacaaaaa
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgagcaaaatgtctggtaaag
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgtgacggtaaaatgaaagat
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcagtaaccagaatggagaac
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtctcgtaactacatagcac
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtgtcctattcacttctat
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaacattagggaggacttga
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTttagatgaagagcaaccaat
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcttcattgcttctttcagac
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaattcaccatttcatcctct
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTttatcttttggttctcacttg
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaccttctttttacgtttactc
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtaataatgaggctttggctt
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgaccaagacatcagtagatt
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTagttgatttttgtggaaagg
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTactggaaagattgctgatta
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTatggtttcactactttctgt
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgatggtgtatgcctattttg
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaacaaaagttggatggaaag
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTggtattggagttacacagaa
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTataacaagagaagtgggttt
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtaaatcacataaaccaccca

(Continued on next page)
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TABLE 5 (Continued)

Journal of Virology

Pool for enrichment (method) or
primer® Sequence (5'—3')°

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtgcctatattaaccttgacc
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTaaatggtatgaatggacgta

T7-P5-dT TAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTCCGATCTtttttttttttttttttt

a0ligonucleotides used in viral-fragment enrichment method 1 and 2, respectively. P7, lllumina primer; VSP, SARS-CoV-2-specific primer; P5, lllumina primer; T7, T7 promoter

for in vitro transcription; N6, random hexamer; dT, oligo(dT).
bLowercase letters represent virus specific primers/regions.

strand DNA synthesis and in vitro RNA transcription using T7 RNA polymerase. Reverse
transcription primed with a random hexamer was then carried out to incorporate an
lllumina P7 adaptor sequence before library amplification by PCR and high-throughput
lllumina sequencing. To also enrich viral sequences that included 5’-to-3" virus-host chi-
meras (enrichment method 2 in Fig. 3A), we performed oligo(dT)-primed reverse tran-
scription to construct cDNA incorporating an Illumina P5 adaptor sequence and T7 RNA
polymerase promoter, followed by second-strand DNA synthesis and in vitro RNA tran-
scription using T7 RNA polymerase. Reverse transcription primed with virus-specific pri-
mers was then carried out to incorporate an lllumina P7 adaptor sequence before library
amplification by PCR and high-throughput lllumina sequencing. Any RNA amplified using
this technique would be enriched in viral sequences, including those mapping solely to
the viral genome and those mapping partially to host as well as viral genomes (HVCs). For
comparison, we also prepared cDNAs from RNAs of infected cells without any enrichment
(unenriched control) (see Materials and Methods).

To validate this approach, we performed quantitative PCR (qPCR) on sequencing
libraries for the SARS-CoV-2 N gene using CDC-recommended primer sets. We specifi-
cally chose the N gene since it is the most highly expressed gene and the site of most
HVC events. We observed dramatic enrichment (more than 30-fold) of viral N gene
MRNA in enriched libraries compared to the level in the control (Fig. 3B). We next per-
formed high-throughput sequencing on all libraries and their corresponding controls
and performed the same analysis presented in Fig. 1. Consistent with our qPCR data, we
found that the total number of reads mapped to the virus genome was much higher in
enriched libraries than in the control (Fig. 3C), indicating mean enrichment for viral reads
of 2- to 6-fold. We then compared the total number of HVC events before and after the
enrichment. Despite the significant enrichment of viral reads, HVC events were not
enriched and their frequency remained at <0.05% (Fig. 3D), comparable to the expected
level from background “noise” denoted previously (Fig. 2D). Moreover, the genomic dis-
tribution of the host portion of these HVC events (Fig. 3E) was similar to those observed
from artifactual chimeric events. In addition, postenrichment HVC events did not overlap
significantly with HVC events from existing RNA-seq data (Fig. 3F). There were only two
HVC events that overlapped with one of the data sets, both from a region of the human
genome annotated as rRNA repetitive elements (Fig. 3F). These data indicate that even
after enrichment of transcripts containing viral sequences, HVC events remained at the
level of noise expected from random RT template switching.

DISCUSSION

Here, we found several lines of evidence that indicate that the observed HVC events
between SARS-CoV-2 and human genetic material in sequencing libraries are most likely
artifactual. We identified HVC events in RNA-seq from SARS-CoV-2-infected cells. These
events were very rare in samples from patients with COVID-19. The precise locations and
the nucleic acid sequences of HVC events are not reproducible across different libraries
prepared by different laboratories, suggesting that they are either stochastic or artifac-
tual. In addition, these events were mostly supported by only one read. The lack of
reproducibility of the exact HVC event does not on its own rule out the possibility of sto-
chastic integration events. However, if an integration had occurred and was being tran-
scribed, then the junction between host and virus DNA would be expected to be evident
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FIG 3 Experimental enrichment for viral-RNA-containing fragments does not enrich HVC events. (A)
Schematic presentation of viral-RNA enrichment from infected host cells. Cellular RNA from infected
cells comprises host RNA, viral RNA, and presumably, any fusion RNA between virus and host. A pool
of oligonucleotide probes that are specific to SARS-CoV-2 were used in a series of reverse
transcription, in vitro transcription, and PCR amplification steps to amplify viral RNAs and potential
host-virus (1) or virus-host (2) chimeras (see Materials and Methods). (B) Expression of N protein in
control and virus-enriched (1 or 2) samples using N1 and N2 qPCR probes recommended by the CDC.
(C) Viral reads in the indicated libraries from SARS-CoV-2-infected Calu-3 cells as a proportion of the
total reads mapped to the chimeric genome. (D) HVC reads in the indicated libraries from SARS-CoV-
2-infected Calu-3 cells as a proportion of the total reads mapped to the SARS-CoV-2 genome. (E)
Distribution of genomic features in the human segment of HVC events detected after enrichment for
viral-RNA-containing transcripts. *, P<0.05, by Wilcoxon test. (F) Venn diagram comparing HVC
events in Calu-3 cells from the data shown in Fig. 2A with postenrichment HVC events.
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multiple times across an RNA-sequencing data set (i.e., independent sequencing reads in
the experiment would show the same host-virus junction). Consistent with previous
reports, we also find the viral part of HVC events to be enriched in sequences from the
3’ end of SARS-CoV-2 virus. This is the portion of the virus that contains the most highly
expressed gene, encoding the N protein (22). Likewise, we also observed that chimeric
events incorporated the more highly expressed host genes. Additionally, A549-ACE2 cells
express the entry receptor for SARS-CoV-2 and, thus, have higher viral entry.
Consequently, they have much higher SARS-CoV-2 RNA levels than other cells, resulting
in higher availability of template to form HVC events. Thus, there are more HVC events
observed in A549-ACE2 cells than in A549 and other cells (Fig. 2A). A model consistent
with these observations is that HVCs are likely the result of stochastic events occurring at
the RNA level that incorporate components of more highly expressed transcripts (tem-
plates) from both the host and virus.

One of the potential mechanisms that could generate artifactual HVC events is ran-
dom template switching by RTs used during RNA-seq library preparation to convert
RNA to cDNA. RTs are known to occasionally switch from one template to another,
thus creating artifactual fusion cDNA. Using spiked-in control RNA, we estimated that
errors in in vitro reverse transcription result in ~1% of RNA-seq reads being artifactu-
ally chimeric, approximately the same frequency as for HVCs observed in SARS-CoV-2-
infected cells. These artifacts can be explained by random template switching during
library preparation. Such analysis provides an expected level of artifactual chimeric
events for the RTs used in common RNA-sequencing library preparation kits (e.g.,
SuperScript 1l). We found that the frequency of HVC events from all SARS-CoV-2-
infected samples was below 1%, indicating that these events are likely to be artifacts
of RTs. Although the mechanistic details of random template switching are not fully
understood, repeat sequences of RNA are known substrates for template switching
(21). Not surprisingly, we found that the host part of HVC events was enriched in RNAs
with highly repetitive structures, including rRNAs and tRNAs (Fig. 2G). This further sup-
ports undesired template switching by RTs as the origin of observed HVC events.

Finally, we developed a novel method to enrich viral-RNA fragments from infected
cells during RNA-seq library preparation. Deploying this method, we found that,
although we could enrich viral transcripts by more than 30-fold, the rate of HVCs
remained unchanged and at or below the expected level of noise introduced by in vitro
RTs. A benefit of our technique is that it is a general method that can easily be used for
enrichment of any RNA and its chimeric partners, as long as sequences for oligonucleo-
tide design are known (e.g., a genome build is available). This is particularly useful
because cellular RNAs in infected cells are typically dominant over RNA derived from
infecting pathogens, especially when infection rates and/or viral titers are low. One
example for the utility of this method is to help identify “cap-snatching” and “start-
snatching” events. In |AV-infected cells, for example, viral transcripts form chimeras with
the 5’ portion of host transcripts containing 5’ caps in order to stabilize viral transcripts
and create bona fide fusion proteins (23, 24). Although there are computational chal-
lenges in aligning sequencing reads if very short fragments (<18bp) are “snatched”
from the host, one would anticipate seeing enrichment of host 5" untranslated region
(UTR) elements in HVC events if similar cap-snatching mechanisms were utilized by
SARS-CoV-2. However, we observed quite the opposite, if anything (Fig. 2G). In fact, the
overall conclusion on successfully enriching viral-RNA reads but observing no enrich-
ment of HVC events above the background level is that the majority of HVCs are the
result of artifacts generated by reverse transcription errors during library preparation.

Collectively, our data analyses and experimental findings indicate that currently
observed and widely reported HVC events are infrequent, not reproducible, and likely to
be artifacts of reverse transcription during RNA-seq library preparation. As anticipated
from the cytoplasmic replication stage of positive-strand RNA viruses, viral integration is
not expected to be a major pathological factor for SARS-CoV-2 and, by extension, not a
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cause for concern in the use of SARS-CoV-2 mRNA vaccines. In summary, current data do
not support the authenticity of HVC events in SARS-CoV-2-infected samples.

MATERIALS AND METHODS

Cell culture and viral infections. Human adenocarcinomic lung epithelial (Calu-3) cells (HTB-55;
ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO) supplemented with 10%
fetal bovine serum (FBS; Corning), HEPES, nonessential amino acids, L-glutamine, and 1x antibiotic-anti-
mycotic solution (Gibco). All cells were maintained at 37°C and 5% CO,. Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) isolate USA-WA1/2020 (NR-52281) was obtained from Bei resources
and was propagated in Vero E6 cells in DMEM supplemented with 2% FBS, 4.5 g/liter p-glucose, 4 mM
-glutamine, 10mM nonessential amino acids, 1 mM sodium pyruvate, and 10 mM HEPES. Infectious
titers of SARS-CoV-2 were determined using the 50% tissue culture infective dose (TCID5,) method of
Reed and Muench. Fifty thousand Calu-3 cells were seeded in 48-well plates and allowed to form 80%
confluent monolayers. SARS-CoV-2 virus was pretreated with porcine trypsin (10 wg/ml) for 15 min at 37
degrees. Cells were then infected with the pretreated virus preparation at a multiplicity of infection
(MOI) of 10 for 1 h in culture medium (the final concentration of trypsin on cells was 2 ug/ml). After
absorption, the virus inoculum was removed and replaced with fresh culture medium. Forty-eight hours
postinfection, cells were harvested and RNA was isolated. Briefly, infected cells were lysed in TRIzol
(Invitrogen) and RNA was extracted using the Direct-zol RNA miniprep kit (Zymo Research) according to
the manufacturer’s instructions. Experiments using SARS-CoV-2 were performed at the University of
Michigan under biosafety level 3 (BSL3) protocols in compliance with containment procedures in labora-
tories approved for use by the University of Michigan Institutional Biosafety Committee (IBC) and
Environment, Health & Safety (EHS) Department.

Library preparation and virus enrichment assay. To experimentally enrich viral RNAs from total
RNA of SARS-CoV-2-infected cells prior to RNA-seq library preparation, we developed a series of in vitro
amplification steps using SARS-CoV-2-specific primers (VSPs) as follows. The VSP pool contained ~30 oli-
gonucleotides that span all SARS-CoV-2 genes (at least one oligonucleotide per gene and nearly 1 oligo-
nucleotide per 1kb of the genome). Given our goal to additionally enrich potential HVC events, we used
two approaches, enrichment method 1 (5'-to-3" host-virus chimeras) and enrichment method 2 (5'-to-3’
virus-host chimeras) (Fig. 3A).

First-strand cDNA synthesis reaction. To capture and enrich virus, virus-host, or host-virus tran-
scripts, we first set up a 20-ul reverse transcription reaction mixture using 100 ng of mRNA isolated from
SARS-CoV-2-infected cells using SuperScript Il reverse transcriptase. We used 2 pmol T7-P5-VSP oligonu-
cleotide pool (for enrichment method 1) or 50 pmol T7-P5-oligo(dT) (for enrichment method 2) as the
“gene-specific primer” for the reverse transcription reaction (Table 5). We also incorporated a T7 pro-
moter and lllumina P5 sequence at the 5’ end of every oligonucleotide, as shown in the schematic in
Fig. 3A. After combining all the components according to the recommended protocol (catalog numbers
18080044 and 18064014; Thermo Fisher), we incubated the entire reaction mixture at 25°C for 15 min,
followed by 50°C for 30 min for SuperScript Ill. Next, we inactivated the reaction mixture by heating at
70°C for 15 min. To remove RNA/cRNA to the cDNA, we added 1 ul of PureLink RNase A (20 mg/ml) (cata-
log number 12091021; Invitrogen) and 1ul (5 units) of RNase H (catalog number E018; Applied
Biological Materials) and incubated at 37°C for 1 h. We then purified cDNA using 1x Mag-Bind total pure
next-generation sequencing (NGS) beads (catalog number M1378-01; Omega Bio-tek) according to the
manufacturer’s instructions and eluted the cDNA in 15 ul of sterile water. To further remove the excess
single-stranded short oligonucleotides, we treated the purified reverse transcription reaction mixture
with 1 ul of exonuclease | (catalog number M0293L; NEB) at 37°C for 30 min. Next, we added excess ster-
ile water to the sample to get a total volume of 40 ul. The reaction mixture was then purified with 1x
Mag-Bind total pure NGS beads and eluted in 15 ul of sterile water.

Second-strand cDNA synthesis and in vitro transcription. Following this, we performed second-
strand synthesis using the NEBNext ultra Il nondirectional RNA second-strand synthesis module accord-
ing to the suggested protocol (catalog number E6111L; NEB). The synthesized DNA was purified via 1x
Mag-Bind total pure NGS beads and eluted in ~12 ul of sterile water. Ten microliters of this was then
used as an input for T7 polymerase-mediated in vitro transcription using the NEB HiScribe T7 high-yield
RNA synthesis kit (catalog number E2040S; NEB). Briefly, all the components were mixed as mentioned
in the kit protocol and incubated at 37°C (lid at 50°C) for 16 h. The reaction mixture was eluted in 20 ul
of sterile water after a round of 1x Mag-Bind total pure NGS bead cleanup. This newly transcribed RNA
was quantified using a NanoDrop, and to improve the hybridization kinetics and enhance the signal,
500 ng of the amplified RNA was fragmented using RNA fragmentation reagent in a total reaction mix-
ture volume of 10 ul according to specifications (catalog number AM8740; Thermo Fisher).

Final reverse transcription and PCR enrichment of the library. Next, to generate final enriched
libraries, we performed reverse transcription of the fragmented RNA with 50 pmol of P7-N6 for enrich-
ment method 1 and 2pmol of the P7-VSP primer pool for enrichment method 2 (Table 5), using
SuperScript Ill reverse transcriptase according to the steps mentioned above. After the reverse transcrip-
tion, the reaction mixture was purified using 1x Mag-Bind total pure NGS beads and eluted in 20 ul of
sterile water. Five microliters of this reverse transcription reaction mixture was saved for running on a
Bioanalyzer and to perform a real-time quantitative PCR validation assay. The remaining 15 ul was used
to PCR amplify the library by using high-fidelity Q5 DNA polymerase (catalog number M0491L; NEB) for
16 cycles using universal primer and unique indices (catalog numbers E7335L and E7500L; NEB) in a total
reaction mixture volume of 50 ul. Finally, the amplified and enriched library was purified using the 0.8x
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Mag-Bind total pure NGS beads, quantified by using the Bioanalyzer/Tape station and then sequenced
using lllumina platform.

Real-time quantitative PCR validation assay. The enrichment of viral genes was determined by per-
forming a real-time quantitative PCR assay on the libraries generated. Briefly, the cDNA generated by
reverse transcription, prior to library amplification by Q5-PCR, was diluted 10- to 20-fold and used to
amplify target gene N of SARS-CoV-2 using CDC-recommended primers 2019-nCoV_N1-F (5'-GAC CCC
AAA ATC AGC GAA AT-3'), 2019-nCoV_N1-R (5" TCT GGT TAC TGC CAG TTG AAT CTG-3'), 2019-nCoV_N2-F
(5" TTA CAA ACA TTG GCC GCA AA-3’), and 2019-nCoV_N2-R (5" GCG CGA CAT TCC GAA GAA3'). The UBC
gene as the housekeeping gene was amplified using primers UBC-F (5'-CCT GGA GGA GAA GAG GAA AGA
GA-3') and UBC-R (5’-TTG AGG ACC TCT GTG TAT TTG TCA A-3’). The real-time quantitative PCR was per-
formed on the Bio-Rad CFX connect system. All experiments were performed in independent triplicates in
total reaction mixture volumes of 15 ul using PowerUp SYBR green master mix (catalog number A25778;
Applied Biosystems). The expression level was calculated by the cycle threshold (274¢") method and nor-
malized to that of the indicated housekeeping gene in the same sample.

Host-virus chimeric read analysis. The raw sequencing files were downloaded from the Sequence
Read Archive (SRA) as shown in Tables 1 and 2. Fastqc (version 0.11.7) was used for data quality control.
Sequencing reads were aligned as single end to the chimeric genome of human (hg38) and SARS-CoV-2
(accession number NC_045512.2) using STAR aligner (version 2.7.7a). For the analyses of the other
viruses, the influenza A virus (IAV) genome (A/Puerto Rico/8/1934 [HIN1], accession number
GCA_000865725.1), Middle East respiratory syndrome (MERS) coronavirus genome (accession number
NC_019843.3), and respiratory syncytial virus (RSV) genome (A2 strain, accession number M11486) were
all sourced from NCBI.

To estimate the background level of chimeric reads in RNA-seq libraries, a fruit fly RNA spike-in control
library (accession number PRINA311567) was used. Briefly, a chimeric genome between human (hg38) and
fruit fly chr4 (dm6) was constructed and the sequencing reads were aligned by the STAR aligner using pa-
rameters —outFilterMultimapNmax 1 -outFilterMismatchNmax 3 -chimSegmentMin 30 -chimOutType
Junctions SeparateSAMold WithinBAM SoftClip —chimJunctionOverhangMin 30 -chimScoreMin 1 -chim-
ScoreDropMax 30 —chimScoreJunctionNonGTAG 0 —chimScoreSeparation 1 —alignSJstitchMismatchNmax -1
-1 -1 -1 —chimSegmentReadGapMax 3.

The known annotated and novel unannotated splicing junctions were extracted from the STAR out-
put as positive controls. The chimeric junctions for human-virus and human-Drosophila were extracted
from the STAR chimeric output. The unique chimeric junctions were considered our chimeric events. To
estimate the reproducibility for each independent study and each cell type, the numbers of unique junc-
tions were extracted. For every pair of independent studies in each cell type, the number of overlapping
junctions was calculated and was divided to the number of junctions in each study. The average of the
two values was then recorded as the reproducibility between that pair.

To examine the genomic features of the HVC reads, HOMER (version 4.11) annotatePeaks.pl was
used to annotate the HVC junctions and the corresponding RNA-seq library. In brief, reads in each RNA-
seq library were converted to genomic regions by bamTobed (bedtools, version 2.30.0) and the unique
regions were kept using the command “sort -k1,1 -k2,2n | uniqg.” The reported “Log, Ratio (obs/exp)” for
each annotation (e.g, tRNA or long terminal repeat [LTR]) was compared between HVC junctions and the
corresponding RNA-seq library. Mann-Whitney's U test was used for statistical analysis.

Data availability. Raw data are available from the Gene Expression Omnibus under accession no.
GSE167131.
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